Abstract

As an alternative to domain discretization methods, the boundary element method (BEM) provides a powerful tool for the calculation of dynamic structural response in frequency and time domain. Field equations of motion and boundary conditions are cast into boundary integral equations (BIE), which are discretized only on the boundary. Fundamental solutions are used as weighting functions in the BIE which fulfil the Sommerfeld radiation condition, i.e., the energy radiation into a surrounding medium is modelled correctly. Therefore, infinite and semi-infinite domains can be effectively treated by the method. The soil represents such a semi-infinite domain in soil-structure-interaction problems. The response to vibratory loads superimposed to static pre-loads can often be calculated by linear viscoelastic constitutive equations. Conventional viscoelastic constitutive equations can be generalized by taking fractional order time derivatives into account.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call