Abstract

The boundary element method (BEM) provides a powerful tool for the calculation of elastodynamic response in frequency and time domain. Field equations of motion and boundary conditions are cast into integral equations, which are discretized only at the boundary. The boundary data often are of primary interest because they govern the transfer dynamics of members and the energy radiation into a surrounding medium. Formulations of BEM currently include conventional viscoelastic constitutive equations in the frequency domain. In the present paper viscoelastic behaviour is implemented in a time domain approach as well. The constitutive equations are generalized by taking fractional order time derivatives into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.