Abstract

Pump-jet propulsor excitation transfers to submarine hull along rotor-shaft and duct-stator paths simultaneously. The investigations on the effects of excitation transfer paths on structural vibration and acoustic radiation of submarine are limited. The present work aims to investigate vibro-acoustic characteristics of coupled shaft-submarine hull system utilizing a theoretical wavenumber analysis method and conduct acoustic design. The energy functional of the coupled structure-fluid system of the research object is first developed, and the displacement components of the jointed shell and the acoustic pressure are expanded by the Fourier series along circumferential direction. This allows for obtaining vibro-acoustic responses in the circumferential wavenumber-frequency domain, by which the predominant wavenumbers contributing to acoustic radiation are identified. The discussions reveal that the modes n = 0 and n = 1 respectively dominate the acoustic radiation under axial and vertical rotor loads. The acoustic radiations under duct-stator load are mainly contributed by mode n = 0, and the higher order modes n = 1 and n = 2 determine several acoustic peaks. Furthermore, two acoustic design schemes are proposed to suppress the wavenumbers with high radiation efficiency. It is proven that the design of the symmetric inner foundation and the application of new material are two efficient ways to improve acoustic performance of the submarine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.