Abstract
Multi-view clustering requires simultaneous attention to both consistency and the diversity of information between views. Deep learning techniques have shown impressive abilities to learn complex features when working with extensive datasets; however, existing deep multi-view clustering methods often focus only on either consistency information or diversity information, making it difficult to balance both aspects. Therefore, this paper proposes a view-driven multi-view clustering using the contrastive double-learning method (VMC-CD), aiming to generate better clustering results. This method first adopts a view-driven approach to consider information from other views to encourage diversity, thus guiding feature learning. Additionally, it presents the idea of dual contrastive learning to enhance the alignment of views at both the clustering and feature levels. The VMC-CD method's superiority over various cutting-edge methods is substantiated by experimental findings across three datasets, affirming its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.