Abstract
This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of methods is the graph-based approach. Despite its elegant and simple formulation, the graph-based approach has not been studied in terms of (a) the generalization of the approach or (b) the impact of different graph metrics on the clustering results. This paper extends this important approach by first proposing a general Graph-Based System (GBS) for multi-view clustering, and then discussing and evaluating the impact of different graph metrics on the multi-view clustering performance within the proposed framework. GBS works by extracting data feature matrix of each view, constructing graph matrices of all views, and fusing the constructed graph matrices to generate a unified graph matrix, which gives the final clusters. A novel multi-view clustering method that works in the GBS framework is also proposed, which can (1) construct data graph matrices effectively, (2) weight each graph matrix automatically, and (3) produce clustering results directly. Experimental results on benchmark datasets show that the proposed method outperforms state-of-the-art baselines significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.