Abstract

Digital cameras are widely used tools for plant monitoring in plant science today. Used to track plant growth or even visible symptoms, they are important tools for breeding and plant protection field trials. Nevertheless, its extension to measure the near infrared (NIR) region (700–1000 nm) includes great potential as plants show a higher light reflectance within this spectrum. Various applications have shown its use for disease detection, quantification, virus content estimation, and stress monitoring. As the next step is a comprehensive integration into agricultural routines, this study will show two use-cases with a high technological readiness level. One use-case shows a handheld multispectral sensor, which is used for manual measurements to detect and discriminate different virus types in sugar beet. In contrast, the second use-case shows a transfer to an UAV based disease quantification routine based on spectral imaging for Cercospora leaf spot. In addition, two prototypical workflows are shown for processing non-imaging and imaging spectral data in an agricultural setting. This study shows the state of the art in spectral sensing in the field for the two major sugar beet diseases – virus yellows and Cercospora leaf spot. Furthermore a future perspective for coming technological challenges regarding the integration of AI in sensors or robotic workflows is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.