Abstract
This paper presents a method for recognition of physical exercises, using only a triaxial accelerometer of a smartphone. The smartphone itself is free to move inside subject's pocket. Exercises for leg muscle strengthening from subject's standing position squat, right knee rise and lunge with right leg were analyzed. All exercises were performed with the accelerometric sensor of a smartphone placed in the pocket next to the leg used for exercises. In order to test the proposed recognition method, the knee rise exercise of the opposite leg with the same position of the sensor was randomly selected. Filtering of the raw accelerometric signals was carried out using Butterworth tenth-order low-pass filter. The filtered signals from each of the three axes were described using three signal descriptors. After the descriptors were calculated, a probability density function was constructed for each of the descriptors. The program that implemented the proposed recognition method was executed online within an Android application of the smartphone. Signals from two male and two female subjects were considered as a reference for exercise recognition. The exercise recognition accuracy was 94.22% for three performed exercises, and 85.33% for all four considered exercises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zbornik radova, Elektrotehnicki institut Nikola Tesla
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.