Abstract

The prevalence of smartphones and their adequate computer skills can be used for detecting everyday physical exercises. Acquired information on performed exercises can be used in the field of Health Informatics. For identification of particular physical activity a number of sensors and their repositioning during exercises are needed. This paper presents a way to classify the type of exercise using only triaxial built-in accelerometric sensor in the smartphone. The smartphone itself is free to move inside the subject pocket. The problem of using a number of sensors and their repositioning during exercise is solved by raw signal filtering and by defining a set of signal descriptors. Nine characteristic exercises have been analyzed for different programs and levels of exercise. To filter the raw accelerometer signal a low-pass 10-th order Butterworth filter is used. The filtered signals are described in terms of five descriptors which are used to train an artificial neural network (ANN). Classification of the type of exercise is performed using ANN with an error of 0.7%. Some exercises can be performed with only left or right leg. The classification accuracy of proposed approach is tested in a way that the smartphone was always in the subject's right pocket even when the exercise is performed using left leg only.

Highlights

  • Kako jedno ponavljanje određene vežbe traje 4 s, sledi da se signal jednog ponavljanja željene vežbe sastoji od 800 semplova

  • Rešenje za povećanje tačnosti klasifikovanja veštačke neuralne mreže (VNM) i smanjenje pogrešnih odluka usled pomeranja senzora telefona je klasifikovanje fizičkih vežbi na osnovu deskriptora signala

  • Kako se može desiti da oblik signala po nekoj osi akcelerometra ili po intenzitetu vektora ubrzanja bude sličan za različite vežbe, postavlja se pitanje na koji način obučiti VNM da izvrši što tačniju klasifikaciju

Read more

Summary

KLASIFIKACIJA FIZIČKIH VEŽBI

Slika 5 - Izgled sirovog signala: (a) sklek, (b) bočno dizanje noge, (c) podizanje noge. Plava boja x-osa, crvena y-osa i zelena z-osa. Kako jedno ponavljanje određene vežbe traje 4 s, sledi da se signal jednog ponavljanja željene vežbe sastoji od 800 semplova. Na slici 5(b) i slici 5(c) je obeležen početni i krajnji položaj nakon izvršenog jednog ponavljanja vežbe. Sa slika se vidi da se početni i krajnji položaji u toku vežbanja razlikuju jer telefon nije fiksiran unutar džepa već se slobodno kreće u toku vežbanja

Preprocesiranje snimljenih signala akcelerometra
Veštačka neuralna mreža
ZAKLJUČAK
SUMMARY

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.