Abstract
In this paper we study the problem of computing an upward straight-line embedding of a planar DAG (directed acyclic graph) G into a point set S, i.e. a planar drawing of G such that each vertex is mapped to a point of S, each edge is drawn as a straight-line segment, and all the edges are oriented according to a common direction. In particular, we show that no biconnected DAG admits an upward straight-line embedding into every point set in convex position. We provide a characterization of the family of DAGs that admit an upward straight-line embedding into every convex point set such that the points with the largest and the smallest y-coordinate are consecutive in the convex hull of the point set. We characterize the family of DAGs that contain a Hamiltonian directed path and that admit an upward straight-line embedding into every point set in general position. We also prove that a DAG whose underlying graph is a tree does not always have an upward straight-line embedding into a point set in convex position and we describe how to construct such an embedding for a DAG whose underlying graph is a path. Finally, we give results about the embeddability of some sub-classes of DAGs whose underlying graphs are trees on point set in convex and in general position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.