Abstract

The thermodynamic uncertainty relation, which establishes a universal trade-off between nonequilibrium current fluctuations and dissipation, has been found for various Markovian systems. However, this relation has not been revealed for non-Markovian systems; therefore, we investigate the thermodynamic uncertainty relation for time-delayed Langevin systems. We prove that the fluctuation of arbitrary dynamical observables is constrained by the Kullback-Leibler divergence between the distributions of the forward path and its reversed counterpart. Specifically, for observables that are antisymmetric under time reversal, the fluctuation is bounded from below by a function of a quantity that can be identified as a generalization of the total entropy production in Markovian systems. We also provide a lower bound for arbitrary observables that are odd under position reversal. The term in this bound reflects the extent to which the position symmetry has been broken in the system and can be positive even in equilibrium. Our results hold for finite observation times and a large class of time-delayed systems because detailed underlying dynamics are not required for the derivation. We numerically verify the derived uncertainty relations using two single time-delay systems and one distributed time-delay system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.