Abstract

The fluctuation theorem is the fundamental equality in nonequilibrium thermodynamics that is used to derive many important thermodynamic relations, such as the second law of thermodynamics and the Jarzynski equality. Recently, the thermodynamic uncertainty relation was discovered, which states that the fluctuation of observables is lower bounded by the entropy production. In the present Letter, we derive a thermodynamic uncertainty relation from the fluctuation theorem. We refer to the obtained relation as the fluctuation theorem uncertainty relation, and it is valid for arbitrary dynamics, stochastic as well as deterministic, and for arbitrary antisymmetric observables for which a fluctuation theorem holds. We apply the fluctuation theorem uncertainty relation to an overdamped Langevin dynamics for an antisymmetric observable. We demonstrate that the antisymmetric observable satisfies the fluctuation theorem uncertainty relation but does not satisfy the relation reported for current-type observables in continuous-time Markov chains. Moreover, we show that the fluctuation theorem uncertainty relation can handle systems controlled by time-symmetric external protocols, in which the lower bound is given by the work exerted on the systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.