Abstract
The thermodynamic uncertainty relation is an inequality stating that it is impossible to attain higher precision than the bound defined by entropy production. In statistical inference theory, information inequalities assert that it is infeasible for any estimator to achieve an error smaller than the prescribed bound. Inspired by the similarity between the thermodynamic uncertainty relation and the information inequalities, we apply the latter to systems described by Langevin equations, and we derive the bound for the fluctuation of thermodynamic quantities. When applying the Cramér-Rao inequality, the obtained inequality reduces to the fluctuation-response inequality. We find that the thermodynamic uncertainty relation is a particular case of the Cramér-Rao inequality, in which the Fisher information is the total entropy production. Using the equality condition of the Cramér-Rao inequality, we find that the stochastic total entropy production is the only quantity that can attain equality in the thermodynamic uncertainty relation. Furthermore, we apply the Chapman-Robbins inequality and obtain a relation for the lower bound of the ratio between the variance and the sensitivity of systems in response to arbitrary perturbations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.