Abstract

Pure gallium has a low melting point (29.8°C) and can be melted in warm water or organic liquids, thus forming two immiscible liquid phases. Irradiation of this system with ultrasonic energy causes cavitation and dispersion of the molten gallium as microscopic spheres. The resultant spheres were found to have radii range of 0.2–5μm and they do not coalesce upon cessation of irradiation, although the ambient temperature is well above the m.p. of gallium. It was found that the spheres formed in water are covered with crystallites of GaO(OH), whereas those formed in organic liquids (hexane and n-dodecane) are smooth, lacking such crystallites. However, Raman spectroscopy revealed that the spheres formed in organic liquids are coated with a carbon film. The latter may be the factor preventing their coalescence at temperatures above the m.p. of gallium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.