Abstract

Bacterial infections pose considerable health risks, emphasising the critical need for effective and biocompatible antibacterial drugs. Considerably, we developed an efficient antimicrobial system incorporating the combined potential of high-frequency ultrasound and antimicrobial drugs against bacterial infections. A ZnO–kaolinite (Kaol) composite with antibacterial properties was synthesised by growing ZnO on the Kaol nano-clay surface using the co-precipitation method. High-frequency ultrasound efficiently promotes the release of Zn2+, which enhances the antibacterial properties. Furthermore, in-depth in vitro antibacterial studies and bacterial live/dead staining experiments validate the exceptionally high antibacterial performance of the composite. Therefore, owing to the synergistic effects of high-frequency ultrasound and antibacterial properties, the as-prepared novel antibacterial composite is a promising potential substitute for conventional antibacterial agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.