Abstract

The omnipresence of secondary microplastics (MPs) in aquatic ecosystems has become an increasingly alarming public health concern. Hydrogen peroxide (H2O2) is an important oxidant in nature and the most stable reactive oxygen species occurred in natural water. In order to explore the contribution of free ˙OH generated from H2O2-driven Fenton-like reactions on the degradation of polyethylene (PE) and generation of micro- and nano-scale plastics in water, a batch experiment was conducted over a period of 620 days in water treated with micromolar H2O2. The incorporation of H2O2 in water induced the formation of flake-like micro(nano)-sized particles due to intensified oxidative degradation of PE films. The presence of ˙OH significantly enhanced the generation of both micro- and nano-scale plastics exhibiting a higher proportion of particles in the range of 200–500 nm compared to the Control. Total organic carbon in the H2O2 treated solution was nearly 174-fold higher than that of the Control indicating a substantial liberation of organic compounds due to the oxidative degradation of native carbon chain of PE and subsequent decomposition of its additives. The highly toxic butylated hydroxytoluene detected from the gas chromatography-mass spectrometry (GC-MS) analysis implied the toxicological behavior of secondary micro(nano)plastics influenced by the oxidation and decomposition processes The findings from this study further expand our understanding of the role of ˙OH in degrading PE micro-scale plastics into nanoparticles as an implication of naturally occurring H2O2 in aquatic environments. In the future, further attention should be drawn to the underlying mechanisms of H2O2-driven in-situ Fenton reaction mediated by natural environmental conditions targeting the alternation of light and darkness on the oxidative degradation of plastics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.