Abstract
We present efficient methods to reliably characterize and tune gate-defined semiconductor spin qubits. Our methods are designed to target the tuning procedures of semiconductor double quantum dot in GaAs heterostructures, but can easily be adapted to other quantum-dot-like qubit systems. These tuning procedures include the characterization of the inter-dot tunnel coupling, the tunnel coupling to the surrounding leads and the identification of the various fast initialization points for the operation of the qubit. Since semiconductor-based spin qubits are compatible with standard semiconductor process technology and hence promise good prospects of scalability, the challenge of efficiently tuning the dot's parameters will only grow in the near future, once the multi-qubit stage is reached. With the anticipation of being used as the basis for future automated tuning protocols, all measurements presented here are fast-to-execute and easy-to-analyze characterization methods. They result in quantitative measures of the relevant qubit parameters within a couple of seconds, and require almost no human interference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.