Abstract

AbstractQuantum computing offers the potential to revolutionize information processing by exploiting the principles of quantum mechanics. Among the diverse quantum bit (qubit) technologies, silicon‐based semiconductor spin qubits have emerged as a promising contender due to their potential scalability and compatibility with existing semiconductor technologies. In this paper, the latest developments of spin qubits in gate‐defined semiconducting nanostructures made of silicon and germanium, starting from the basic properties of electron and hole states in group‐IV semiconductors, are reviewed. Specifically, various nanostructures that exploit their unique microscopic properties for qubit implementations, elaborating on the advances and challenges in experiments, are discussed. Strategies for enhancing qubit performance, such as designing new nanostructures and identifying suitable operating points, particularly those involving the valleys of electron qubits and the heavy‐hole–light‐hole mixing of hole qubits, are also highlighted. This comprehensive review thus provides valuable insights into the current state‐of‐the‐art in semiconductor quantum computing and suggests avenues for future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call