Abstract

Semiconductor spin qubits have gained increasing attention as a possible platform to host a fault-tolerant quantum computer. First demonstrations of spin qubit arrays have been shown in a wide variety of semiconductor materials. The highest performance for spin qubit logic has been realized in silicon, but scaling silicon quantum dot arrays in two dimensions has proven to be challenging. By taking advantage of high-quality heterostructures and carefully designed gate patterns, we are able to form a tunnel coupled 2 × 2 quantum dot array in a 28Si/SiGe heterostructure. We are able to load a single electron in all four quantum dots, thus reaching the (1,1,1,1) charge state. Furthermore, we characterize and control the tunnel coupling between all pairs of dots by measuring polarization lines over a wide range of barrier gate voltages. Tunnel couplings can be tuned from about 30 μeV up to approximately 400 μeV. These experiments provide insightful information on how to design 2D quantum dot arrays and constitute a first step toward the operation of spin qubits in 28Si/SiGe quantum dots in two dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call