Abstract

We present a number of fresh perspectives on pilot-wave hydrodynamics, the field initiated in 2005 by Couder and Fort's discovery that millimetric droplets self-propelling along the surface of a vibrating bath can capture certain features of quantum systems. A recurring theme will be that pilot-wave hydrodynamics furnishes a classical framework for reproducing many quantum phenomena and allows one to rationalize such phenomena mechanistically, from a local realist perspective, obviating the need to appeal to quantum nonlocality. The distinction is drawn between hydrodynamic pilot-wave theory and its quantum counterparts, Bohmian mechanics, the Bohm–Vigier stochastic pilot-wave theory, and de Broglie's theory of the double-solution. Each of these quantum predecessors provide a valuable touchstone as we take the physical picture engendered in the walking droplets and extend it into the quantum realm via theoretical modeling. Emphasis is given to recent developments in the field, both experimental and conceptual, and to forecasting potentially fruitful new directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call