Abstract
Mobile Crowd-Sensing (MCS) has appeared as a prospective solution for large-scale data collection, leveraging built-in sensors and social applications in mobile devices that enables a variety of Internet of Things (IoT) services. However, the human involvement in MCS results in a high possibility for unintentionally contributing corrupted and falsified data or intentionally spreading disinformation for malevolent purposes, consequently undermining IoT services. Therefore, recruiting trustworthy contributors plays a crucial role in collecting high-quality data and providing better quality of services while minimizing the vulnerabilities and risks to MCS systems. In this article, a novel trust model called Experience-Reputation (E-R) is proposed for evaluating trust relationships between any two mobile device users in a MCS platform. To enable the E-R model, virtual interactions among the users are manipulated by considering an assessment of the quality of contributed data from such users. Based on these interactions, two indicators of trust called Experience and Reputation are calculated accordingly. By incorporating the Experience and Reputation trust indicators (TIs), trust relationships between the users are established, evaluated and maintained. Based on these trust relationships, a novel trust-based recruitment scheme is carried out for selecting the most trustworthy MCS users to contribute to data sensing tasks. In order to evaluate the performance and effectiveness of the proposed trust-based mechanism as well as the E-R trust model, we deploy several recruitment schemes in a MCS testbed which consists of both normal and malicious users. The results highlight the strength of the trust-based scheme as it delivers better quality for MCS services while being able to detect malicious users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Information Forensics and Security
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.