Abstract

Internet of Things (IoT) services are directly deployed on resource-constrained smart devices. Smart devices are characteristic by spatial and temporal constraints and energy limitations. A single IoT service cannot meet the complex requirements of users, so multiple IoT services need to be combined to provide services to users. As more and more smart devices are deployed in IoT, how to select IoT services with lower energy consumption and better quality of service (QoS) for service composition becomes a challenging problem. Combined with the characteristics that the data information of IoT is closely related to geographical location, the GeoHash algorithm is used to locally screen services based on geographical location, so as to narrow the range of candidate services. For smart devices with energy constraints, this paper proposes a combined optimization model. The model considers not only the transmission energy consumption and switching energy consumption, but also the execution energy consumption when the device provides services. In order to balance QoS attributes and energy consumption, the composition problem is regarded as a multi-objective optimization problem and solved using a genetic algorithm (GA). The simulation results show that service composition scheme selected by this service composition optimization model has lower energy consumption and higher service quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.