Abstract
In the blooming era of the Internet of Things (IoT), trust has become a vital factor for provisioning reliable smart services without human intervention by reducing risk in autonomous decision making. However, the merging of physical objects, cyber components and humans in the IoT infrastructure has introduced new concerns for the evaluation of trust. Consequently, a large number of trust-related challenges have been unsolved yet due to the ambiguity of the concept of trust and the variety of divergent trust models and management mechanisms in different IoT scenarios. In this PhD thesis, my ultimate goal is to propose an efficient and practical trust evaluation mechanisms for any two entities in the IoT. To achieve this goal, the first important objective is to augment the generic trust concept and provide a conceptual model of trust in order to come up with a comprehensive understanding of trust, influencing factors and possible Trust Indicators (TI) in the context of IoT. Following the catalyst, as the second objective, a trust model called REK comprised of the triad Reputation, Experience and Knowledge TIs is proposed which covers multi-dimensional aspects of trust by incorporating heterogeneous information from direct observation, personal experiences to global opinions. The mathematical models and evaluation mechanisms for the three TIs in the REK trust model are proposed. Knowledge TI is as “direct trust” rendering a trustor’s understanding of a trustee in respective scenarios that can be obtained based on limited available information about characteristics of the trustee, environment and the trustor’s perspective using a variety of techniques. Experience and Reputation TIs are originated from social features and extracted based on previous interactions among entities in IoT. The mathematical models and calculation mechanisms for the Experience and Reputation TIs also proposed leveraging sociological behaviours of humans in the real-world; and being inspired by the Google PageRank in the web-ranking area, respectively. The REK Trust Model is also applied in variety of IoT scenarios such as Mobile Crowd-Sensing (MCS), Car Sharing service, Data Sharing and Exchange platform in Smart Cities and in Vehicular Networks; and for empowering Blockchain-based systems. The feasibility and effectiveness of the REK model and associated evaluation mechanisms are proved not only by the theoretical analysis but also by real-world applications deployed in our ongoing TII and Wise-IoT projects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.