Abstract
Rising international oil costs and the transport industry's recovery from the effects of Covid-19 resulted in the efficient management of fuel by logistics companies becoming a significant concern. One way of managing this is by analyzing the fuel consumption of trucks so as to better utilize the costly resource. Twenty-three driving data variables were gathered from 210 freight trucks and analyzed this data. Relevant variables that impact truck fuel consumption were extracted from the initial 23 variables gathered using stepwise regression, and then a prediction model was built from the identified relevant variables utilizing a binary logistic regression model. In addition, a back propagation neural network was employed in this study to create a second model of truck fuel use, and comparisons between the two models were made. The outcomes showed that the binary logistic regression model and the back-propagated neural network model prediction accuracy were 68.4% and 77.2%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Operations Research and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.