Abstract
PurposeIn order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.Design/methodology/approachIn order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.FindingsIn order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.Originality/valueIn order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.
Full Text
Topics from this Paper
Back Propagation Neural Network Algorithm
Back Propagation Neural Network
L2 Syntactic Complexity Analyzer
Syntactic Complexity
Deep Neural Network Algorithm
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Fractals
Sep 30, 2021
Apr 1, 2021
Process Safety and Environmental Protection
Jan 1, 2020
Frontiers in Psychology
May 27, 2022
Journal of Computer and Communications
Oct 22, 2020
China Journal of Chinese Materia Medica
Aug 1, 2020
Optical Engineering
Mar 30, 2021
Sustainability
Oct 17, 2022
Transactions of Nanjing University of Aeronautics and Astronautics
May 18, 2018
Mar 3, 2023
Mobile Information Systems
Jan 1, 2021
Wireless Communications and Mobile Computing
Jun 8, 2022
International Journal of Advanced Computer Science and Applications
Jan 1, 2022
Aug 1, 2022
Library Hi Tech
Library Hi Tech
Nov 30, 2023
Library Hi Tech
Nov 7, 2023
Library Hi Tech
Nov 6, 2023
Library Hi Tech
Oct 31, 2023
Library Hi Tech
Oct 30, 2023
Library Hi Tech
Oct 23, 2023
Library Hi Tech
Oct 16, 2023
Library Hi Tech
Oct 13, 2023
Library Hi Tech
Sep 15, 2023
Library Hi Tech
Sep 12, 2023