Abstract
This paper presents a 3D transmission line matrix (TLM) implementation for the solution of transient heat flow in integrated semiconductor devices. The implementation uses a rectangular discontinuous mesh to allow for local mesh refinement. This approach is based on a quad tree meshing technique which can have a complex geometry using blocks of varying sizes. Each such block can have a maximum of two adjacent blocks on any vertical side and a maximum of four blocks on the top or bottom.The TLM implementation is based on a physical extraction of a resistance and capacitance network and then the creation of the appropriate TLM matrix. The formulation allows for temperature-dependent material parameters and a non-uniform time stepping.The simulator is first tested using a 2D example of a heat source in a rectangular region. Using this example the numerical error is determined and found to be less than 0.4%. Next, non-linearities are included, and a number of non-uniform time stepping algorithms are tested. Then, a 3D problem is also compared to an analytical solution and again the error is very small. Finally, an example of a full solution of heat flow in a realistic Si trench device is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.