Abstract

We investigate both experimentally and theoretically the traffic of particles flowing in microfluidic obstacle networks. We show that the traffic dynamics is a nonlinear process: the particle current does not scale with the particle density even in the dilute limit where no particle collision occurs. We demonstrate that this nonlinear behavior stems from long-range hydrodynamic interactions. Importantly, we also establish that there exists a maximal current above which no stationary particle flow can be sustained. For higher current values, intermittent traffic jams form, thereby inducing the ejection of the particles from the initial path and the subsequent invasion of the network. Eventually, we put our findings in the broader context of the transport processes of driven particles in low dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.