Abstract
Accurate decoding of quantum error-correcting codes is a crucial ingredient in protecting quantum information from decoherence. It requires characterizing the error channels corrupting the logical quantum state and providing this information as a prior to the decoder. We introduce a reinforcement learning inspired method for calibrating these priors that aims to minimize the logical error rate. Our method significantly improves the decoding accuracy in repetition and surface code memory experiments executed on Google's Sycamore processor, outperforming the leading decoder-agnostic method by 16% and 3.3%, respectively. This calibration approach will serve as an important tool for maximizing the performance of both near-term and future error-corrected quantum devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.