Abstract

Despite extensive work on traffic dynamics and epidemic spreading on complex networks, the interplay between these two types of dynamical processes has not received adequate attention. We study the effect of local-routing-based traffic dynamics on epidemic spreading. For the case of unbounded node-delivery capacity, where the traffic is free of congestion, we obtain analytic and numerical results indicating that the epidemic threshold can be maximized by an optimal routing protocol. This means that epidemic spreading can be effectively controlled by local traffic dynamics. For the case of bounded delivery capacity, numerical results and qualitative arguments suggest that traffic congestion can suppress epidemic spreading. Our results provide quantitative insight into the nontrivial role of traffic dynamics associated with a local-routing scheme in the epidemic spreading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.