Abstract

Pulsar timing arrays seek and study gravitational waves (GWs) through the angular two-point correlation function of timing residuals they induce in pulsars. The two-point correlation function induced by the standard transverse-traceless GWs is the famous Hellings-Downs curve, a function only of the angle between the two pulsars. Additional polarization modes (vector or scalar) that may arise in alternative-gravity theories have different angular correlation functions. Furthermore, anisotropy, linear, or circular polarization in the stochastic GW background gives rise to additional structure in the two-point correlation function that cannot be written simply in terms of the angular separation of the two pulsars. In this Letter, we provide a simple formula for the most general two-point correlation function-or overlap reduction function (ORF)-for a gravitational-wave background with an arbitrary polarization state, possibly containing anisotropies in its intensity and polarization (linear and/or circular). We provide specific expressions for the ORFs sourced by the general-relativistic transverse-traceless GW modes as well as vector (or spin-1) modes that may arise in alternative-gravity theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.