Abstract

Based on the typical aerospace frame structure, the fatigue life law of the structure under multi-axis correlation time-domain random excitation is studied. By constructing multi-axis time-domain random excitation with different correlation coefficients, multi-axial fatigue theory and structural vibration fatigue life time-domain method are used to calculate the fatigue life of the structure under different excitations; by constructing the structural finite element model in MSC. Pastran and nCode-DesignLife, and Co-simulation calculates the structural fatigue life. The results show that there is a negative correlation between the correlation coefficient of the applied multi-axis time-domain random excitation and the structural fatigue life, that is, the larger the correlation coefficient, the shorter the fatigue life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call