Abstract
Additive manufacturing (3D printing) has transformed dentistry by providing solutions with high precision and accuracy achieved through digital workflows, which facilitate the creation of intricate and personalized structures. Additionally, 3D printing promotes cost efficiency by reducing material waste and errors while enabling on-demand production, minimizing the need for extensive inventories. Recent advancements in 3D-printed resin materials have enhanced their clinical applications by improving mechanical strength, biocompatibility, esthetics, and durability. These innovations have facilitated the fabrication of complex and patient-specific structures, such as dental prostheses, surgical guides, and orthodontic appliances, while significantly reducing production time and material waste. Ongoing research and innovation are expected to strengthen resin properties, including strength, translucency, and durability, broadening their clinical applications. The ongoing evolution of 3D printing technology is poised to play a critical role in driving personalized treatments, streamlining clinical workflows, and shaping the future of dental care. This narrative review comprehensively examines the production techniques and clinical applications of 3D-printed photopolymer resins across various dental specialties, including prosthodontics, orthodontics, pediatric dentistry, maxillofacial surgery, periodontology, endodontics, and conservative dentistry. Additionally, the review provides insight into the transformative impact of these technologies on patient care, highlights existing challenges, and suggests future directions for advancing resin properties and their integration into routine dental practice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have