Abstract

Point-of-care 3-dimensional (3D) printing has become more common in recent years because many hospitals have created 3D printing laboratories. Traditional techniques to fabricate an immediate dental prosthesis for fibula and implant reconstructions have involved outsourcing to dental laboratories. This results in delays, making it suitable only for benign disease. In the present report, we have demonstrated a technique for in-house creation of a 3D printed dental prosthesis for placement of implants at free fibula maxillofacial reconstruction. Our digital method has reduced costs and shortened the interval to surgery compared with traditional laboratory techniques. Twelve patients underwent free fibula reconstruction of the mandible or maxilla with immediate implants and immediate teeth. A dental implant-retained restoration was created before surgery for immediate placement at fibula reconstruction. For the first 5 patients, the prosthesis was fabricated by a dental laboratory after virtual surgical planning. For the next 7 patients, the prosthesis was designed by the surgeon and 3D printed via the in-house laboratory. Four of these in-house cases were performed for malignant disease with skin paddles. All 12 patients received an immediate implant-retained fixed prosthesis at fibula reconstruction. The time required to generate the in-house 3D printed prostheses was significantly shorter than that required to create the dental laboratory-fabricated prostheses. The costs were also less with the 3D printed prostheses compared with the dental laboratory-fabricated prostheses. The digital workflow we have presented eliminates the delay in creating a dental laboratory-fabricated provisional dental prosthesis for fibula and implant reconstruction. This allows for immediate dental restoration for patients with malignant disease previously considered unsuitable owing to the inherent delay required using an offsite dental laboratory. A decrease in cost to create in-house 3D printed prostheses was noted compared with the prostheses fabricated by a dental laboratory. Case selection is critical to predict the soft tissue needs for composite defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.