Abstract

The weighted density-functional theory is applied to investigate the free-energy landscape of dense supercooled liquids. Metastable states intermediate to the liquid and crystal phases are found, which can be identified with the supercooled states seen in computer simulations. These states are marked by a lower degree of mass localization as compared to the highly localized state termed as "hard-sphere glass" found in earlier studies. We evaluate the free energy using the modified weighted density approximation (MWDA), as formulated by Denton and Ashcroft (1989) Phys. Rev. A , 39 , 4701. The inhomogeneous density is parametrized in terms of Gaussian profiles centered around random lattice sites. The effects of heterogeneity coming from a fluctuation of the width of these Gaussian profiles show that the free energy of the system increases with increase in the fluctuations and, finally, the metastable minima disappear with growing fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call