Abstract

The objective of this study was to evaluate the feasibility of using either mid-infrared (MIR) or near-infrared (NIR) spectroscopy to predict the vitamin C content in Kakadu plum (Terminalia ferdinandiana Exell, Combretaceae) powder samples. Vitamin C is the main and quality-determining bioactive compound in Kakadu plum (KP). Kakadu plum powder samples were analyzed by ultra-performance liquid chromatography coupled to a photodiode array detector (UPLC-PDA) and scanned using both MIR and NIR spectroscopy. The coefficient of determination (R2 ) and the standard error in cross validation (SECV) for vitamin C were 0.93 and 1811 mg 100 g dry weight (DW) and 0.91 and 1839 mg 100 g DW using MIR and NIR spectroscopy, respectively. The coefficient of correlation and the standard error of prediction (SEP) obtained using the independent set (n = 5) were 0.65 (SEP: 2367 mg 100 g DW) and 0.73 (SEP: 4773 mg 100 g DW) using MIR and NIR spectroscopy, respectively. The results obtained in this study clearly showed that it is possible to calibrate IR spectroscopic instruments for the measurement of vitamin C in KP plum powder samples. Mid-infrared spectroscopy showed the most promising results; however, Fourier transform near-infrared (FTNIR) spectroscopy also produced models capable of good quantification of this important bioactive compound and vitamin. These findings are promising in terms of using high-throughput IR spectroscopy as a routine technology to determine vitamin C in plant-based foods and derived products. © 2020 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call