Abstract
The use of black soldier fly larvae (BSFL) grown on different organic waste streams as a source of feed ingredient is becoming very popular in several regions across the globe. However, information about the easy-to-use methods to monitor the safety of BSFL is a major step limiting the commercialization of this source of protein. This study investigated the ability of near infrared (NIR) spectroscopy combined with chemometrics to predict yeast and mould counts (YMC) in the feed, larvae, and the residual frass. Partial least squares (PLS) regression was employed to predict the YMC in the feed, frass, and BSFL samples analyzed using NIR spectroscopy. The coefficient of determination in cross validation (R2CV) and the standard error in cross validation (SECV) obtained for the prediction of YMC for feed were (R2cv: 0.98 and SECV: 0.20), frass (R2cv: 0.81 and SECV: 0.90), larvae (R2cv: 0.91 and SECV: 0.27), and the combined set (R2cv: 0.74 and SECV: 0.82). However, the standard error of prediction (SEP) was considered moderate (range from 0.45 to 1.03). This study suggested that NIR spectroscopy could be utilized in commercial BSFL production facilities to monitor YMC in the feed and assist in the selection of suitable processing methods and control systems for either feed or larvae quality control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.