Abstract

The potential of Fourier transform infrared (FT-IR), near-infrared (NIR), and Raman spectroscopic techniques combined with partial least squares (PLS) regression (PLSR) to predict concentrations of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total omega-3 fatty acids (n-3 FAs) in fish oil supplements was investigated. FT-IR spectroscopy predicted EPA (coefficient of determination (R(2)) of 0.994, standard error of cross-validation (SECV) of 2.90%, and standard error of prediction (SEP) of 2.49%) and DHA (R(2) = 0.983, SECV = 2.89%, and SEP = 2.55%) with six to seven PLS factors, whereas a simpler PLS model with two factors was obtained for total n-3 FAs (R(2) = 0.985, SECV = 2.73%, and SEP = 2.75%). Selected regions in the NIR spectra gave models with good performances and predicted EPA (R(2) = 0.979, SECV = 2.43%, and SEP = 3.11%) and DHA (R(2) = 0.972, SECV = 2.34%, and SEP = 2.60%) with four to six PLS factors. Both the whole and selected NIR regions gave simple models (two PLS factors) with similar results (R(2) = 0.997, SECV = 2.18%, and SEP = 1.60%) for total n-3 FAs. The whole and selected regions of Raman spectra provided models with comparable results and predicted EPA (R(2) = 0.977, SECV = 3.18%, and SEP = 2.73%) and DHA (R(2) = 0.966, SECV = 3.31%, and SEP = 2.56%) with seven to eight PLS factors, whereas a simpler model (three PLS factors) with R(2) = 0.993, SECV = 2.82%, and SEP = 3.27% was obtained for total n-3 FAs. The results demonstrated that FT-IR, NIR, and Raman spectroscopy combined with PLSR can be used as simple, fast, and nondestructive methods for quantitative analysis of EPA, DHA, and total n-3 FAs. FT-IR and NIR spectroscopy, in particular, have the potential to be applied in process industries during production of fish oil supplements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call