Abstract
The electronic structure of the interface between the boron-doped oxygenated amorphous silicon “window layer” (a-SiOx:H(B)) and aluminum-doped zinc oxide (ZnO:Al) was investigated using hard x-ray photoelectron spectroscopy and compared to that of the boron-doped microcrystalline silicon (μc-Si:H(B))/ZnO:Al interface. The corresponding valence band offsets have been determined to be (−2.87 ± 0.27) eV and (−3.37 ± 0.27) eV, respectively. A lower tunnel junction barrier height at the μc-Si:H(B)/ZnO:Al interface compared to that at the a-SiOx:H(B)/ZnO:Al interface is found and linked to the higher device performances in cells where a μc-Si:H(B) buffer between the a-Si:H p-i-n absorber stack and the ZnO:Al contact is employed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have