Abstract
The enhancement of lipid peroxidation in neutrophils (the content of malonic dialdehyde increased by 10.2%) has been shown after a 1-h exposure to a combined constant (42 μT) magnetic field and a weak low-frequency magnetic field (1.0, 4.4, and 16.5 Hz; 860 nT) collinear to it. No correlation was found between this effect and the process of functional pre-activation (priming) of neutrophils as a result of the combined action of magnetic fields detected by chemiluminescence enhancement in response to the introduction of the bacterial peptide N-formyl–Met–Leu–Phe in the presence of luminol, since ionol (10 μM), an inhibitor of lipid peroxidation, did not reduce the neutrophil priming index in this case. Preliminary addition of histidine (0.1 and 1.0 mM), a singlet oxygen scavenger, also did not decrease the priming index. A myeloperoxidase inhibitor, sodium azide (0.1 mM), exerted a significant inhibitory effect on the chemiluminescence intensity of the neutrophil suspension; priming did not develop in the presence of this inhibitor after the action of combined magnetic fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.