Abstract

This paper presents a matrix permuting approach to the construction of Low-Density Parity-Check (LDPC) code. It investigates the structure of the sparse parity-check matrix defined by Gallager. It is discovered that the problem of constructing the sparse parity-check matrix requires an algorithm that is efficient in search environments and also is able to work with constraint satisfaction problem. The definition of Q-matrix is given, and it is found that the queen algorithm enables to search the Q-matrix. With properly permuting Q-matrix as sub-matrix, the sparse parity-check matrix which satisfied constraint condition is created, and the good regular-LDPC code that is called the Q-matrix LDPC code is generated. The result of this paper is significant not only for designing low complexity encoder, improving performance and reducing complexity of iterative decoding arithmetic, but also for building practical system of encodable and decodable LDPC code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call