Abstract
Despite the availability of a vast variety of metal ions in the periodic table, biology uses only a selective few metal ions. Most of the redox active metals used belong to the first row of transition metals in the periodic table and include Fe, Co, Ni, Mn and Cu. On the other hand, Ca, Zn and Mg are the most commonly used redox inactive metals in biology. In this chapter, we discuss the periodic table's impact on bio-inorganic chemistry, by exploring reasons behind this selective choice of metals biology. A special focus is placed on the chemical and functional reasons why one metal ion is preferred over another one. We discuss the implications of metal choice in various biological processes including catalysis, electron transfer, redox sensing and signaling. We find that bioavailability of metal ions along with their redox potentials, coordination flexibility, valency and ligand affinity determine the specificity of metals for biological processes. Understanding the implications underlying the selective choice of metals of the periodic table in these biological processes can help design more efficient catalysts, more precise biosensors and more effective drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structure and bonding
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.