Abstract
Abstract A general shape function is proposed for describing the instrumental spreading behavior in gel permeation chromatography (GPC) columns due to axial dispersion and skewing effects. The general shape function contains statistical coefficients which describe the axial dispersion, skewing, and flattening of ideal monodisperse standards. A method denoted as the “method of molecular weight averages” is used to derive equations to correct GPC number- and weight-average molecular weights and intrinsic viscosities calculated from linear molecular weight calibration curves. The validity of these equations is experimentally verified with data for polystyrene, polybutadiene, and polyvinyl chloride polymers in tetrahydrofuran. The physical significance of the correction equations and their statistical coefficients is discussed in relation to the observed GPC chromatograms. Application of this shape function to the numerical Fourier analysis method for correcting differential molecular weight distribution (DMW...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have