Abstract
Abstract The instrument spreading function suggested in Part I of this series is investigated for use with the Fourier transform method for generating corrected elution volume chromatograms. The instrument spreading parameters are obtained using linear theory on narrow molecular weight distribution standards, as indicated in Part I. The corrected chromatogram is then combined with a nonlinear molecular weight calibration curve which was fit with a function suggested by Yau and Malone to generate true values of the number- and weight-average molecular weights. The instrument spreading function is shown to qualitatively and quantitatively describe the dispersion, skewing, and flattening effects ordinarily found in GPC chromatograms due to imperfect resolution by the GPC columns. The Yau-Malone function is shown to be a very useful function for fitting nonlinear molecular weight vs elution volume calibration data. Although the Fourier transform method is shown to work well with analytically generated data, i...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.