Abstract
In this paper, the dynamical behavior of an eco-epidemiological model with distributed delay is studied. Sufficient conditions for the asymptotical stability of all the equilibria are obtained. We prove that there exists a threshold value of the conversion rate h beyond which the positive equilibrium bifurcates towards a periodic solution. We further analyze the orbital stability of the periodic orbits arising from bifurcation by applying Poore’s condition. Numerical simulation with some hypothetical sets of data has been done to support the analytical findings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have