Abstract
In this paper, the dynamical behavior of a virus dynamics model with CTL immune response is studied. Sufficient conditions for the asymptotical stability of a disease-free equilibrium, an immune-free equilibrium and an endemic equilibrium are obtained. We prove that there exists a threshold value of the infection rate b beyond which the endemic equilibrium bifurcates from the immune-free one. Still for increasing b values, the endemic equilibrium bifurcates towards a periodic solution. We further analyze the orbital stability of the periodic orbits arising from bifurcation by applying Poore’s condition. Numerical simulation with some hypothetical sets of data has been done to support the analytical findings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have