Abstract
Abstract In this paper, the dynamical behavior of a virus dynamics model with CTL immune response and time delay is studied. Time delay is used to describe the time between the infected cell and the emission of viral particles on a cellular level. The effect of time delay on stability of the equilibria of the CTL immune response model has been studied and sufficient criteria for local asymptotic stability of the disease-free equilibrium, immune-free equilibrium and endemic equilibrium and global asymptotic stability of the disease-free equilibrium are given. Some conditions for Hopf bifurcation around immune-free equilibrium and endemic equilibrium to occur are also obtained by using the time delay as a bifurcation parameter. Numerical simulation with some hypothetical sets of data has been done to support the analytical findings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have