Abstract
In this paper, necessary and sufficient numerical conditions for stability and for asymptotic stability of linear continuous time-varying systems are derived. For a given set of initial conditions, a tube containing all the trajectories of the system is constructed in the state space. At each instant of time, there exists an initial condition inside the set such that the resulting trajectory attains the border of the tube. Based on the above formulation, necessary and sufficient conditions for stability and for asymptotic stability are expressed through the solution of a linear differential Lyapunov equation. The conditions can deal with the stability of periodic systems as well. One of the main characteristics of the proposed necessary and sufficient conditions is that the only assumption on the dynamical matrix of the linear time-varying system is continuity. Examples from the literature illustrate the superiority of the proposed conditions when compared to other methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.