Abstract

For single-core reflected neutronic systems, generalized neutron generation time is derived and given physical interpretations in terms of importance. A system kinetic equation containing the moderator region response function previously introduced is reduced by a slow-variation approximation to the form of a conventional one-point kinetic equation, in which a parameter can be identified as generalized neutron generation time by analogy with a bare system. In such a mathematical expression for the parameter, one can further identify the amount of increase due to reflection over the bare system generation time. This amount is found to be the reflection time multiplied by the number of migrations that neutrons undergo between reflector and core in one generation. The theoretical generation time of the SHE assembly, a thermal-energy, graphite-moderated critical assembly, calculated by such a formation with cylindrical geometry, agreed well with that from pulsed neutron experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.