Abstract

The second moment method is a linear acceleration technique that couples the transport equation to a diffusion equation with transport-dependent additive closures. The resulting low-order diffusion equation can be discretized independent of the transport discretization, unlike diffusion synthetic acceleration, and is symmetric positive definite, unlike quasidiffusion. While this method has been shown to be comparable to quasidiffusion in iterative performance for fixed source and time-dependent problems, it is largely unexplored as an eigenvalue problem acceleration scheme due to the belief that the resulting inhomogeneous source makes the problem ill posed. Recently, a preliminary feasibility study was performed on the second moment method for eigenvalue problems. The results suggested comparable performance to quasidiffusion and more robust performance than diffusion synthetic acceleration. This work extends the initial study to more realistic reactor problems using state-of-the-art discretization techniques. The results in this paper show that the second moment method is more computationally efficient than its alternatives on complex reactor problems with unstructured meshes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.