Abstract
The Advanced Test Reactor’s (ATR’s) distinctive ability to provide a wide range of irradiation conditions is attractive for programs pursuing fuel qualification experiments. These potentially high-fuel-load experiments are a relatively new development and produce unexplored effects on nearby experiments. This paper explores how photon heating of such an experiment may affect other nearby experiment programs, ultimately serving to better inform decisions regarding experiment design and risks to programmatic goals. The MC21 (Monte Carlo for the 21st Century) code is used to model and study how gamma heat generation rates and axial effects impact different ATR positions. The results reveal that the proximity of a given experiment’s position to the high-fuel-load one can significantly alter that experiment’s expected axial profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.