Abstract

Large negative reactivity of a subcritical system driven by a pulsed 14 MeV neutron source has been measured in the Kyoto University Critical Assembly. The subcriticality of the accelerator-driven system (ADS) ranged in effective multiplication factor roughly from 0.98 to 0.92, which corresponded to an operational range of an actual ADS proposed by Japan Atomic Energy Agency. As the measurement technique, pulsed neutron method, power spectral analysis for pulsed neutron source, accelerator-beam trip method were employed. From neutron count decay data obtained by the pulsed neutron experiment, not only the prompt-neutron decay constant of fundamental mode but also a higher spatial mode could be derived. The subcriticality was also determined from the fundamental decay constant. The measured cross-power spectral density consisted of a familiar correlated reactor-noise component and many uncorrelated delta-function-like peaks at the integral multiple of pulse repetition frequency. The fundamental prompt-neutron decay constant, i.e., the subcriticality determined from the latter uncorrelated peaks was consistent with that obtained by the above pulsed neutron experiment. However, the magnitude of the former correlated component was reduced with an increase in the subcriticality and eventually this component became almost white at deeply subcritical state ranging in the multiplication factor under 0.95. Consequently, the determination of the decay constant from the correlated component was impossible under such a subcritical state. As data analysis method for the beam trip experiment, both the conventional integral count method and the least-squares inverse kinetics method (LSIKM) were employed. The LSIKM analysis led to the consistent subcriticality with that obtained by the pulsed neutron experiment, while the integral count method significantly underestimated the subcriticality. This underestimation originated from a residual background count, which was maintained after the beam trip. The LSIKM was mostly not influenced by such a slight count rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call